An approach for optimizing multi-objective problems using hybrid genetic algorithms
نویسندگان
چکیده
منابع مشابه
Optimizing fuzzy multi-objective problems using fuzzy genetic algorithms, FZDT test functions
Abstract: The following work outlines a robust method for accounting the fuzziness of the objective space while dealing with the real world optimization problems. Use of mean/approximated value of input parameters doesn't account for the variability in the optimized solution inherited due to variability in the input parameters which is very crucial, especially in real world problems. The follow...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملSolving Multi-Objective Linear Control Design Problems Using Genetic Algorithms
Two multi-objective genetic algorithms, an elitist version of MOGA and NSGA-II, were applied to solve two linear control design problems. The first was a H2 problem with a PI controller structure, for a first order stable plant. The second was a mixed H2/H4 control problem. In both cases, three indicators were used to evaluate each algorithm performance: Set coverage, spread and hypervolume. It...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملMulti-objective rule mining using genetic algorithms
Association rule mining problems can be considered as a multi-objective problem rather than as a single objective one. Measures like support count, comprehensibility and interestingness, used for evaluating a rule can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions present in the rule. This obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Soft Computing
سال: 2020
ISSN: 1432-7643,1433-7479
DOI: 10.1007/s00500-020-05149-3